

Experimental Study on Flow Rate Measurement Downstream of an Elbow Pipe using the Clamp-on ultrasonic Flowmeter

S. Wada¹, ON. Furuichi¹

H. Hamada², T. Akama², T. Yamaguchi², S. Suzuki² and S. Takatsuka²

¹Advance Industrial Science and Technology, National Metrology Institute of Japan ²TOKYO KEIKI INC., Tokyo, Japan

Purpose of this study

AIST

- Meter factor is required for a conventional flowmeter. (obtained in a calibration facility)
- Meter factor depends on a velocity profile in a pipe. (Downstream of elbow, valve...)

On-site calibration without modification of existing pipe

Calibration using a Master Flowmeter

Purpose of this study

Requirement

AIST

- 1. Velocity profile measurement
- 2. Clamp-on

 $\overline{\mathbf{v}}$

Ultrasonic flowmeter based on Doppler method

- Fundamental Uncertainty Analysis of Flowrate Measurement using the Ultrasonic Doppler Velocity Profile Method, Furuichi, N., Flow Measurement and Instrumentation, 30, 2013, pp.202-211
- S. Wada, N. Furuichi, Influence of obstacle plates on flowrate measurement uncertainty based on ultrasonic Doppler velocity profile method, Flow Measurement and Instrumentation, 48, 2016, pp.81-89
- S. Wada, N. Furuichi, T. Shimada, Development of ultrasound pulse-train Doppler method for velocity profile and flowrate measurement, Measurement and Science Technology, 27, 2016, 115302
- S. Wada, N. Furuichi and T. Shimada, "Application of partial inversion pulse to ultrasonic timedomain correlation method to measure the flow rate in a pipe", Measurement and Science Technology, 28, 2017, 115302

Purpose of this study

Clamp-On transit-time ultrasonic

To evaluate of an uncertainty of flow rate measurement using the clamp-on ultrasonic flowmeter, experiments were carried out at the national standard calibration facility of water flow rate in Japan, as a first step toward an on-site calibration.

Liquid flow calibration facility

AIST, Tsukuba North Site

Water flow facility

Oil flow facility

AIST

Water flow calibration facility

Water flow calibration facility (50t, 5t, 500kg tank system)

Flowrate : 0.3 m³/h – 3000 m³/h Temperature : ambient, ±1 °C/day

AIST

Experimental apparatus and conditions

Results (downstream of the long straight pipe)

These results indicate clearly that 4 paths can measure the flow rate accurately compared with 1 path, even though downstream of the long straight pipe.

 $E = \frac{Q_u}{Q_w} - 1$ Where, Q_u and Q_w are the flow rate measured by the ultrasonic flowmeter and the weighing tank system, respectively. E_{arg} is the average value of all measured *E*.

Results (downstream of an elbow : 1 path mode)

These results indicate that the accuracy of flow rate measurement depends on the circumferential position of transducer because of the strongly disturbed flow by the elbow.

Results (downstream of an elbow : 4 paths mode)

The errors and standard deviations of flow rate measurement are almost equivalent to the errors downstream of the long straight pipe condition, when using the 4 paths mode.

Conclusion

- The clamp-on ultrasonic flowmeter using 4 paths can measure the flow rate accurately compared with 1 path downstream of the long straight pipe.
- The errors and standard deviations measured downstream of the elbow pipe using 4 paths are equivalent to the case of the long straight pipe, even if the velocity profiles are disturbed strongly by the upstream elbow pipe.
- Questions for <u>s.wada@aist.go.jp</u> ?